Interstellära resor är i
science fiction-litteraturen och -filmen vanligt förekommande. Vi har genom några årtiondens populärkultur blivit så indoktrinerade med dessa att de ses som så självklara att till och med stora vetenskapsmän som Stephen Hawking börjar yra om att
kolonisera planeter runt andra stjärnor.
I verkligheten är det istället hårda fysikaliska fakta som gäller och jag postulerar därför att
interstellära resor är orimliga enligt förklaringen nedan.
Innan du fortsätter rekommenderar jag att du läser inlägget "
Ofattbara avstånd i rymden", som jag skrev för några veckor sedan (om du inte redan läst det).
"Närmsta stjärnan Proxima Centauri ligger 4,25 ljusår (40 209 000 000 000 kilometer) från solen."
Den av människan uppsända rymdsond som för tillfället befinner sig längst ifrån Jorden är
Voyager 1, som 10 december 2016 var 20 500 000 000 kilometer från solen, efter drygt 39 års resa. Den rör sig bort från Solen med en hastighet av cirka 17 kilometer per sekund, vilket är den högsta hastigheten bort från solen som någon rymdsond hittills uppnått. Dess vikt vid uppskjutningen var 826 kg. Voyager 1 sköts upp av en
Titan IIIE - en monsterraket som vägde 633 ton.
För att nå till
Proxima Centauri skulle Voyager 1 behöva (med 17 km/s = 61 200 km/h = 1 468 800 km/dygn = 536 479 200 km/år) 74 950 år. Det är förstås alldeles för lång tid och vill vi genomföra interstellära resor inom rimlig tid måste sonden alltså gå betydligt snabbare.
Det enda sättet att accelerera i rymden är genom att kasta ut massa i motsatt riktning - det är vad raketer gör. Accelerationen beror dels på hur mycket massa du kastar ut, dels på hastigheten i utkastandet. Hastigheten beror i sin tur på hur explosivt raketbränslet är samt hur raketen är utformad.
Formeln för hur mycket energi (E) som behövs för att få upp en viss massa (m) i en viss hastighet (v) är E = 1/2 m v
2. Energin är alltså (inte oväntat) linjärt beroende av massan, men beroende av
hastigheten i kvadrat. Det är i beroendet till hastigheten de oöverstigliga problemen uppstår.
Låt oss säga att vi vill nå Proxima Centauri på 100 år - en rimlig tidsrymd för att ett interstellärt projekt ska vara lönt att genomföra inom en högteknologisk civilisations livstid. Då skulle vår rymdsond behöva uppnå en hastighet på 402 090 000 000 km/år = 1100 862 422 km/dygn = 45 869 267 km/h = 12 741 km/s, alltså omkring 750 gånger snabbare än Voyager 1. Det skulle då gå åt 562 500 gånger så mycket energi. Supermegamonsterraketen skulle behöva väga minst 356 miljoner ton om den skulle använda liknande teknik som Titan IIIE. Även om vi kan tänka oss mer effektiv raketteknik skulle det ändå för en rymdsond på knappt ett ton röra sig om storleksordningen hundratals miljoner ton. Hur mycket är det? Keopspyramiden väger cirka 5,7 miljoner ton. Minst tjugo Keopspyramider - raketen skulle alltså bli orimligt stor.
Och hur mycket energi skulle (energiförluster oräknade) gå åt? För att accelerera Voyager till denna hastighet skulle det (enligt formeln ovan för rörelseenergi) krävas drygt 140
petajoule (PJ, femton nollor). Årligen förbrukar mänskligheten omkring 500 000 PJ. Det är alltså en icke föraktlig andel av vår årliga energiförbrukning som skulle gå åt. Nu var det endast energin som raketen genererar som vi beräknade. För konstruktionen av raketen skulle det säkert gå åt minst tio gånger så mycket energi som raketen genererar. Storleksordningen på energin kan också jämföras med
Tsar Bomba, den största kärnvapenexplosionen någonsin, som var på 210 PJ. Där talar vi visserligen om tillräcklig mängd energi, men den ska också vara kontrollerad och riktad.
Nu talar vi bara om energin för att skicka en obemannad rymdsond på knappt ett ton. Ett bemannat rymdskepp skulle behöva väga minst tiotals ton för att få plats med all utrustning som behövs för 100 års resa.
Det enda som möjligen känns rimligt att skicka på insterstellära avstånd skulle vara mikrosonder av något slag.
Dessutom vet vi inte hur långt bort närmsta beboeliga planet befinner sig. Den kan ligga 4 eller 40 eller 400 ljusår bort. Nåja, i sammanhanget känns det oviktigt med tanke på hur mycket energi som går åt redan för 4 ljusår.
Nästa problem är det damm som finns i den
interstellära rymden. Även om det är extremt glest finns det ändå dammpartiklar där och med en hastighet av 46 miljoner kilometer i timmen får dessa partiklar en sanslös kraft. Ett stoftkorn på endast 37 milligram skulle i den hastigheten motsvara rörelseenergin hos ett Rc-lok på 78 ton i 100 km/h. Det skulle göra ett litet hål rakt igenom vårt rymdskepp. Även om du bara skulle träffa på ett större dammkorn per ljusår, så räcker det med ett enda för att sabba hela äventyret. Jag har inte räknat på hur tätt dammkornen ligger i den interstellära rymden och därmed sannolikheten för att träffa ett, men det är gissningsvis även det ett oöverstigligt problem.